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Abstract .   

Vacuum-assisted resin transfer molding (VARTM)-type processes have been proven 
cost-effective manufacturing techniques for large composite structures. However, their use has 
been limited to a single resin system. Many composite structures require multiple resins to serve 
different purposes while being integrated into a single structure. Co-injection resin transfer 
molding (CIRTM) is a new manufacturing process developed by the U.S. Army Research 
Laboratory (ARL) with the University of Delaware that enables the user to manufacture 
multilayer hybrid composite parts in a single processing step. In this report, CIRTM is used to 
manufacture a dual-layered structure consisting of a vinyl-ester layer for structural integrity and 
a phenolic layer for fire, smoke, and toxicity protection. The two resins are simultaneously 
injected into a mold filled with a stationary fiber bed and are co-cured. Resin separation is 
maintained by a 1-mil-thick polysulfone film sandwiched between two layers of 6.5-mil-thick 
adhesive. A differential scanning calorimeter (DSC) is used to select the optimum cure cycle for 
all of the materials. Mechanical testing is used to evaluate the performance of the interphase 
formed between dissimilar materials. Experimental results show that co-injected, co-cured 
materials offer equivalent properties, or, in some cases, more superior properties than those 
provided by single-injection resin composites. This case is used to develop and present a 
methodology that can be followed to co-inject different resins. 
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1. Background and Motivation 

Composite materials have a number of advantages over traditional materials. Some of these 

advantages are light weight, high stiffness-to-weight ratio, improved signature management, and 

resistance to corrosion. In most cases, one material cannot serve all of these functions, but different 

materials can be easily layered to serve multiple tasks while being integrated in a single structure. 

For example, vinyl esters are low-cost resins that offer good mechanical properties, room- 

temperature cure, and reliable processing. However, they are extremely flammable and produce 

toxic smoke upon combustion. This limits their use in a variety of applications where material 

flammability is a concern. Phenolic resins offer low cost but poor mechanical properties due to the 

evolution of water during cure. However, they offer outstanding fire, smoke, and toxicity protection 

[1]. Using co-injection resin transfer molding (CIRTM) [2], a single structure can be manufactured 

with a thick layer of vinyl ester to take advantage of its mechanical properties and a thin layer of 

phenolic to act as a fire, smoke, and toxicity barrier. 

Pike, McArthur, and Schade [3] have shown that vacuum-assisted resin transfer molding 

(VARTM) processes are cost-effective methods to manufacture large structures. CIRTM takes 

advantage of these methods and improves them by enabling them to manufacture multilayer 

structures in a single processing step. Prior to CIRTM, each layer would typically be manufactured 

individually and then bonded together. This approach requires multiple steps, including surface 

pretreatments and adhesive bonding, which can introduce additional defects into the part. CIRTM 

eliminates all of these additional steps, lowers costs, and can improve quality and performance of 

the part due to the co-cure feature of the process. The fundamentals of CIRTM are investigated in 

detail by Gillio [4] and by Gillio et al. [5]. In this present study, the CIRTM process is described and 

used to fabricate glass-reinforced vinyl-ester/phenolic hybrid composites. Parts are subject to a 

variety of tests to characterize mechanical properties and durability of the interphase formed during 

co-injection and co-cure. 



2. Manufacturing Procedure 

2.1 Processing. In the vast majority of structural applications, the vinyl-ester layer would be 

considerably thicker than the phenolic layer. However, in this research, the co-injected preforms 

were of equal thickness. This was done because the mechanical tests performed to evaluate the 

interphase properties require that the interface between the dissimilar materials be located at the 

geometric midplane. Additionally, the Mode I mterlaminar fracture double cantilever beam (DCB) 

test and the wedge test require that the precrack be placed at the midthickness between two cantilever 

beams of comparable stiffness. Therefore, under the assumption that the modulus is a fiber- 

dominated property, the panels were manufactured with the same fiber reinforcement throughout the 

thickness. Sublaminates infiltrated with each type of resin were assumed to have the same modulus. 

Figure 1 shows the experimental setup used to manufacture the co-injected specimens. Seven 

layers of S2-glass twill-weave, 18-oz/yd2 fabric were used for the phenolic and vinyl-ester preforms. 

The vinyl ester used in this study was Dow Derakane 411-350, which is a room-temperature vinyl 

ester with a gel time of approximately 30 min. The phenolic used was J2027/L manufactured by 

British Petroleum and cures at approximately 140° F. An impermeable separation layer was used 

between them to demonstrate the feasibility of this method for large composite structures. The need 

for an impermeable separation layer was investigated by Gillio et al. [6]. The setup used in this 

study is typical of the Seemann composite resin infusion molding process (SCRIMP) [7]. The 

distribution medium placed on each side of the preforms is a high-permeability material that helps 

carry the flow along the length and width of the part while the resin flows through the thickness of 

the preform. The distribution media drastically reduces fill times and enables thick section parts to 

be impregnated under vacuum only. The resins were simultaneously injected from the two injection 

locations shown in the figure. Once the part was infused and the resin had cured, the distribution 

medium was removed. 
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Figure 1. Experimental Setup Used to Manufacture the Co-Injected Specimens. 

The impermeable separation layer was formed of a polysulfone film sandwiched between two 

layers of epoxy-based adhesive. This solution exploits the diffusion-enhanced adhesion (DEA) 

[8-10] mechanisms where epoxy and the amine curing agent diffuse and react in the polysulfone 

barrier layer. A 1-mil-thick polysulfone film was selected to go into solution quickly with the epoxy 

and to toughen the interphase during cure.   Additionally, the phenolic is co-cured with the 



compatible epoxy. The approach provides a toughened co-cured interphase between materials that 

would not be compatible otherwise. 

The manufacturing took place in the following steps. First, the mold surface, a flat steel plate, 

was cleaned and mold release was applied to it. Then, the distribution medium was placed on the 

plate. On top of it, an impermeable layer was placed in which a window had been cut approximately 

1 in smaller than the preform on each side. The purpose of this window was only to avoid edge 

effects, and it was removed, together with the distribution media, after the process was complete. A 

layer of release film was placed on top of these two layers so that they could be removed. The first 

seven layers of S2-glass were then placed on top of the release film so that the distribution media 

would extend out from underneath the preform on one side. Then, the separation layer was placed 

on top of the fiber preform. Generally, the polysulfone film was sandwiched between the epoxy 

adhesive before the part was laid up. Once the separation layer was in place, seven layers of S2-glass 

were placed on top of the preform followed by another layer of release ply and a layer of distribution 

media. At this point, the lay-up was complete. Two inlet tubes were used. One was placed on top 

of the preform, and the second one on the part of the bottom distribution media that extended out 

from underneath the preform. The vacuum tube was placed at the opposite end of the preforms. 

This whole assembly was then placed under a vacuum bag and sealed, and the vacuum was applied. 

The vacuum serves three purposes: (1) it compacts the fabric; (2) it removes the air, thus reducing 

the number of voids in the composite; and (3) it creates a pressure difference that drives the 

impregnation of the resin into the spaces between the fibers. 

A number of baseline panels were manufactured and tested, and the results from all specimens 

were compared. Two single-resin baseline panels were manufactured: one with a vinyl-ester matrix 

and one with a phenolic matrix. The main purpose of these baselines was to assess the performance 

of the co-injected parts. It would not be expected that the co-injected specimens would perform 

better than the weaker of the two constituent materials. Finally, a panel was manufactured in a three- 

step process to simulate the current multistep procedure used to manufacture multilayer structures. 

Two panels were manufactured: one using phenolic and the other using vinyl-ester resins. Then, 



they were bonded together using the same adhesive film used in co-injection. In order to limit the 

number of variables, the polysulfone film was used together with the adhesive in an effort to 

compare manufacturing techniques. 

2.2 Materials. One of the primary challenges presented by co-injection is the selection of a cure 

cycle. During co-injection, two or more polymers co-cure together. Therefore a cure cycle must be 

selected, which allows the successful cure of all polymers. Since this application of CIRTM is 

designed for large structures, the goal in selecting the materials was to maintain the cure cycle below 

200° F (95° C). The vinyl ester used was Dow Derakane 411-350, which cures at room temperature 

using 0.2% by weight of cobalt napthenate as the accelerator and 2% by weight of Trigonox 239A 

(organic peroxide) as the initiator. The phenolic was British Petroleum's J2027/L, a low-viscosity 

resole phenolic that was catalyzed using 5% by weight Phencat 381. This phenolic must be cured 

at approximately 140° F in order to limit void formation due to the water present in the phenolic 

resin. Two adhesive films were selected for this study. The first was 3M's AF-163-20ST, which 

is an amine-cured epoxy-based adhesive. This adhesive is designed to cure at 225° F or higher. 

However, Figure 2 shows that it is possible to cure it as low as 200° F if the time periods are 

extended significantly. Another adhesive, a phenolic-epoxy (PH/EP), was selected due to its better 

compatibility between the adhesive and the bulk phenolic. This resin is manufactured by 

Cytec-Fiberite as a film adhesive, HT 424. The compatibility is believed to be improved with this 

adhesive because PH/EP has a similar curing reaction to the bulk phenolic resin, whereas the epoxy 

adhesive has a much different curing reaction. As in the previous case, the PH/EP is designed to 

cure at elevated temperatures, 350° F, but, again, it is possible to lower the cure temperature by 

increasing the cure time. 

The infusion of the part takes place at room temperature to facilitate the manufacturing process, 

particularly when this technology will be used to manufacture large composite structures. After the 

infusion, the part is cured at 140° F (60° C) for 4 hr to cure the phenolic. It is necessary to go 

through this slow cure cycle to limit the formation of voids in the phenolic layer. 
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Figure 2. Degree of Cure of the Epoxy Adhesive at Different Temperatures. 

After the 4-hr cure of the phenolic, several variations of adhesive cure times were investigated. 

Two separate cases were investigated for the materials with 3M epoxy adhesive. The first was 4 hr 

at 200° F, which provided adequate cure when tested in the differential scanning calorimeter (DSC) 

(Figure 2). In addition, another set was cured at 200° F for an additional 24 hr. This time length was 

chosen as a maximum limiting time for the epoxy to co-cure with phenolic at 200° F. This cure 

cycle was investigated because there is a reaction between the acidic curing of the resole phenolic 

resin and the basic amine curing agent in the epoxy film adhesive. It was anticipated that this 

reaction could retard the cure of both resins in the interphase region. Therefore, an extended cure 

cycle was investigated to determine whether this retardation of the reaction could be compensated 

for by increased cure time. The goal of this new cycle schedule was to fully cure the adhesive while 

minimizing cure temperature for manufacturing of large structures. The materials using the PH/EP 



film adhesive used the same 4-hr, 140° F cure cycle to cure the phenolic and were then cured for 4 hr 

at 200° F to cure the adhesive. 

3. Results and Discussion 

3.1 Short Beam Shear. The American Society for Testing Materials (ASTM) short beam shear 

test (ASTM 2344) is an extremely popular test due to its simplicity. This makes it a good tool to 

compare shear strength and overall quality of different composite specimens. Specimens were cut 

using a diamond-coated saw blade based on the dimensions dictated by the ASTM standard. 

Crosshead speed was set at 0.05 in/min (1.27 mm/min), and at least 10 specimens were tested for 

each type of specimen. The apparent shear strength was obtained using the following formula: 

SH=0.75^-, (1) H bd 

where SH is the apparent shear strength, PB is the failure load, b is the width of the specimen, and d 

is the thickness. The majority of failures occurred at the interphase between dissimilar materials. 

Table 1 summarizes the results obtained. Results discussed in the text incorporate statistical 

variation (mean minus 3 standard deviations [a]). The vinyl ester performed considerably better than 

all of the materials with shear strength of 5.0 ksi. The phenolic sample exhibited significantly lower 

shear strength (2.9 ksi) than the vinyl-ester baseline. The multistep and 8-hr cure co-injection panels 

using the amine/epoxy adhesive (2.7-2.8 ksi) were slightly lower than the phenolic baseline. 

Notable improvements in shear strength are achieved with co-injected panels using the 28-hr 

extended cure amine/epoxy adhesive (4.2 ksi), as well as the 8-hr cure PH/EP adhesive (3.2 ksi). 

Short beam shear tests show the potential for co-injected parts to provide equivalent or improved 

properties when cure cycles are optimized. Further research is required to fully optimize the process 

and performance. 



Table 1. Short Beam Shear Results 

Material 
Apparent Shear 

Strength 
(psi) 

Apparent Shear 
Strength 

[Mean Minus 3o] 
(psi) 

Failure Type and 
Location 

Vinyl-Ester 411-350 5,360 ± 120 4,990 Brittle, Midplane 

Phenolic J2027/L 3,280 ± 120 2,930 Brittle, Midplane 

Multistep Process 3,420 ± 230 2,720 Adhesive 

Co-Injected With Amine/Epoxy 
Adhesive (8-hr Cure) 

2,970 + 70 2,760 Cohesive, 
Phenolic Side 

Co-Injected With Amine/Epoxy 
Adhesive (28-hr Cure) 

4,470 ± 100 4,170 Cohesive, 
Phenolic Side 

Co-Injected With PH/EP 
Adhesive (8-hr Cure) 

3,450 ±80 3,210 First Ply Phenolic 

3.2 DCB Testing. DCB measures Mode I fracture toughness, which is a measure of the 

resistance of the material to delamination within the interphase. The DCB test (ASTM D-5588) 

directly loads the interphase formed during processing. The DCB test is expected to be more 

sensitive to the performance of the various interphases created than the SBS test. In the DCB 

specimen, an artificial flaw of known dimension was manufactured into the composite in the form 

of a precrack. The specimens were then cut from the composite panel. The specimens were 

approximately 24 mm wide and 300 mm long. Two blocks were then bonded to the end of the 

specimen where the precrack was located to allow loading of the specimen. One of the sides of the 

specimen was carefully painted, and evenly-spaced marks were placed 5 mm apart. The crosshead 

speed was set at 0.5 mm/min. The specimens were placed in the fixture, and the load was applied. 

As the load was applied, the crack tip propagated along the specimen. During the test, the critical 

load, Per, and the crosshead displacement, \a, were recorded at every crack tip location. 

These data were then used to obtain the fracture toughness of the material using the experimental 

compliance method, also known as Berry's method [11]. The benefit of this method is that it enables 

Gic vs. a to be determined and, consequently, the R-curve effects to be quantified through the 

following relationship: 



nP v 
G      iffkla. (2) 

k      2Wa 

where the critical load and the crosshead displacement are measured during the test; n is the power 

law index relating compliance to crack length and fit to the data based on 

C = Kan. (3) 

The results of the DCB tests are summarized in Table 2 and presented in Figure 3. The 

vinyl-ester specimens provided the highest fracture toughness (980 J/m2) followed by the co- 

injection panel using the PH7EP adhesive (730 J/m2). The other two co-injection panels exhibited 

fracture toughnesses similar to the phenolic panel (530-560 J/m2). The multistep process exhibited 

significant scatter in the results and yielded the lowest performance at 360 J/m2. All of the 

co-injected specimens showed cohesive failure. Note that the samples that used a PH/EP adhesive 

had the highest fracture toughness of any multiple resin material tested. The high Mode I fracture 

toughness of this material is most likely due the chemical compatibility between the film adhesive 

and the phenolic resin. Additionally, the precrack was placed both between the phenolic and the 

epoxy and between the epoxy and the vinyl ester, but this did not appear to effect the results. In most 

of the DCB samples, the failure was between the epoxy adhesive and the phenolic. It should also 

be noted that the specimens manufactured through a multistep process exhibited undesirable 

adhesive failure. 

The co-injected specimens that used an epoxy/amine adhesive and were cured for only 8 hr 

exhibit a unique behavior; the fracture toughness decreases with increasing crack length. 

Additionally, during the tests, it was noted that the failure that occurred in the epoxy adhesive was 

always extremely ductile, displaying a behavior that indicated that the epoxy had not fully cured. 

This stimulated the development of the 24-hr cure cycle. A viscoelastic response exhibited by 

partially cured thermoset resins would be expected to exhibit this behavior. It is difficult to 

characterize the local effects on cure and viscoelastic behavior that evolves during processing and 



Table 2. Summary of DCB Results 

Material 
Fracture 

Toughness 
(J/m2) 

Fracture 
Toughness 

[Mean Minus 38] 
(J/m2) 

Comments 

Vinyl-Ester 411-350 1,220 ±80 980 mostly brittle fracture at surface 

Phenolic J2027/L 730 ± 60 550 high void content 

Multistep Process 720 ±120 360 fails at adhesive/phenolic 
interface 

Co-Injected 
(Amine, 8-hr Cure) 

860 ±100 560 failure in adhesive on phenolic 
side; ductile behavior suggests 
material not fully cured 

Co-Injected 
(Amine, 28-hr Cure) 

740 ±70 530 cohesive failure in epoxy on 
phenolic side, cracks developed in 
first plv of phenolic 

Co-Injected 
(PH/EP, 8-hr Cure) 

940 ±70 730 cohesive failure PH/EP adhesive 
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interphase formation. Consequently, the DCB tests were conducted at higher rates to substantiate 

the mechanism. 

Smiley and Pipes [12], as well as Gillespie, Carlsson, and Smiley [13] have studied the rate 

effects in the DCB test and can be quantified by defining a crack opening displacement rate as the 

opening displacement rate at a small arbitrary distance, e, from the crack tip. The crack opening 

displacement rate, yct, is a function of both the crosshead speed, v, and the crack length, a. The 

expression they derive is: 

y«=^- (4) 

Figure 4 shows the change in crack opening displacement rate as a function of crack length for 

one of the co-injected specimens where yct changes by one order of magnitude as the crack 

propagates along the specimen. Specimens were retested at a rate 10 times the original crosshead 

speed (5 to 50 mm/min). Results are compared to the lower rate data and clearly show the rate effect 

on Mode I fracture toughness. The decreasing fracture toughness behavior is not present at the 

higher loading rate, as shown in Figure 5. It is apparent from the behavior in these co-injected 

specimens that the epoxy adhesive did not fully cure. The joint exhibited rate-dependent behavior 

in both the DCB and in subsequent durability tests. This finding confirms that, in co-injection, it is 

not sufficient to define the cure cycle of the final part by simply combining the cure cycles of the 

individual materials. 

An additional proof of the fact that the viscoelastic behavior is caused by a partially cured 

interphase is that the extended cure cycle (28 hr) specimens did not exhibit any kind of viscoelastic 

behavior. These specimens had a slight reduction of Mode I fracture toughness as compared to the 

8-hr cure specimens. The fracture toughness remained constant or increased with increasing crack 

length exhibiting a traditional R-curve behavior. 

11 
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3.3 Durability Tests. The final test conducted on the specimens was a durability test. The 

wedge test (ASTM 3762) was used to evaluate the performance of the interphase under adverse 

environmental conditions. The wedge test is performed on the same type of specimens used for the 

DCB. A wedge was inserted into the precrack to initiate a crack. The entire specimen was then 

inserted in water to simulate an adverse environment, and the crack propagation was recorded at 

regular time intervals. In this test, the highly stressed crack tip was continuously exposed to room- 

temperature water, and, therefore, its long-term durability could be evaluated. Figure 6 shows a 

graph of crack propagation vs. time for all phenolic/vinyl-ester hybrid samples. Under initial wedge 

insertion, cracks propagated and arrested to the distance at time = 0 in Figure 6. The cracks are then 

measured at given time intervals over a testing period of 2 weeks. The crack in the co-injected 

specimen that uses the epoxy/amine adhesive and the short cure cycle, on the other hand, keeps 

propagating for longer times, exhibiting reduced durability. This is consistent with the viscoelastic 

behavior observed in the DCB tests. All other materials demonstrate superior durability in this 

environment. 

4. Conclusions 

An application of CIRTM technology has been investigated for the purpose of producing large- 

scale composite structures with an integral fire barrier. Multilayer composite materials composed 

of a glass-reinforced vinyl-ester structural section and a glass-reinforced phenolic fire barrier section 

have been successfully manufactured using CIRTM processing. Mechanical characterization of 

these materials suggests that the choice of materials is critical to the success of the CIRTM process. 

A number of different alternatives were evaluated. Three different co-injected samples were 

evaluated in detail. Two used the same separation material, an epoxy/amine adhesive, but different 

cure cycle. One cycle was 8 hr, while the other was extended to 28 hr in order to ensure complete 

cure of the materials. The third samples were manufactured using a PH/EP adhesive to improve 

chemical compatibility with the phenolic resin. Investigations revealed that superior adhesion 

between the layers could be achieved through the use of the extended cure cycle or the PH/EP 

adhesive layer for the phenolic side of the part.  Short beam shear tests show the potential for 
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co-injected parts to provide equivalent or improved properties when cure cycles are optimized. 

However, the panel manufactured with the epoxy/amine adhesive and the short cure cycle exhibited 

inferior fracture toughness and durability and is attributed to the inhibition of cure at the PH/EP 

interphase due to acid-base interactions. Interlaminar shear strength values (mean minus 3 a) of 

4.2 ksi and 3.2 ksi were measured for the extended cure cycle and PH/EP adhesive specimens, as 

compared to a value of 2.7 ksi for a panel made with the secondary bonding techniques. Although 

CIRTM has provided superior properties and may reduce manufacturing costs, it is necessary to 

carefully consider the interactions between dissimilar materials to optimize interphase properties, 

structural performance, and cure cycles. 
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